Second- and third-hand chloroplasts in dinoflagellates: phylogeny of oxygen-evolving enhancer 1 (PsbO) protein reveals replacement of a nuclear-encoded plastid gene by that of a haptophyte tertiary endosymbiont.
نویسندگان
چکیده
Several dinoflagellate species have plastids that more closely resemble those of an unrelated algal group, the haptophytes, suggesting these plastids have been obtained by tertiary endosymbiosis. Because both groups are photosynthetic, all of the genes for nuclear-encoded plastid proteins might be supplied by the dinoflagellate host or some of them might have been replaced by haptophyte genes. Sequences of the conserved nuclear psbO gene were obtained from the haptophyte Isochrysis galbana, the peridinin-containing dinoflagellate Heterocapsa triquetra, and the 19'hexanoyloxy-fucoxanthin-containing dinoflagellate Karenia brevis. Phylogenetic analysis of the oxygen-evolving-enhancer (PsbO) proteins confirmed that in K. brevis the original peridinin-type plastid was replaced by that of a haptophyte, an alga which had previously acquired a red algal chloroplast by secondary endosymbiosis. It showed clearly that during this tertiary symbiogenesis the original psbO gene in the dinoflagellate nucleus was replaced by a psbO gene from the haptophyte nucleus. The phylogenetic analysis also confirmed that the origin of the peridinin-type dinoflagellate plastid was indeed a red alga.
منابع مشابه
A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis.
The most widely distributed dinoflagellate plastid contains chlorophyll c(2) and peridinin as the major carotenoid. A second plastid type, found in taxa such as Karlodinium micrum and Karenia spp., contains chlorophylls c(1) + c(2) and 19'-hexanoyloxy-fucoxanthin and/or 19'-butanoyloxy-fucoxanthin but lacks peridinin. Because the presence of chlorophylls c(1) + c(2) and fucoxanthin is typical o...
متن کاملContinued evolutionary surprises among dinoflagellates.
I t is well established that chloroplasts in green and red algae are derived from a primary endosymbiotic event between a cyanobacterium and a eukaryotic organism 1 billion years ago (Fig. 1; refs. 1 and 2). Although these two groups account for many of the world’s photosynthetic species, most other major taxonomic groups of photosynthetic organisms (stramenopiles—including diatoms, phaeophytes...
متن کاملPhylogenetic analyses indicate that the 19'Hexanoyloxy-fucoxanthin-containing dinoflagellates have tertiary plastids of haptophyte origin.
The three anomalously pigmented dinoflagellates Gymnodinium galatheanum, Gyrodinium aureolum, and Gymnodinium breve have plastids possessing 19'-hexanoyloxy-fucoxanthin as the major carotenoid rather than peridinin, which is characteristic of the majority of the dinoflagellates. Analyses of SSU rDNA from the plastid and the nuclear genome of these dinoflagellate species indicate that they have ...
متن کاملNuclear, Mitochondrial and Plastid Gene Phylogenies of Dinophysis miles (Dinophyceae): Evidence of Variable Types of Chloroplasts
The Dinophysis genus is an ecologically and evolutionarily important group of marine dinoflagellates, yet their molecular phylogenetic positions and ecological characteristics such as trophic modes remain poorly understood. Here, a population of Dinophysis miles var. indica was sampled from South China Sea in March 2010. Nuclear ribosomal RNA gene (rDNA) SSU, ITS1-5.8S-ITS2 and LSU, mitochondri...
متن کاملUsing nuclear-encoded LSU and SSU rDNA sequences to identify the eukaryotic endosymbiont in Amphisolenia bidentata (Dinophyceae).
The marine dinoflagellate Amphisolenia bidentata possesses complete intracellular symbionts of prokaryotic and eukaryotic origin. This was confirmed ultrastructurally little over 20 years ago when it was showed that the eukaryotic endosymbiont had a nucleus, a chloroplast and mitochondria. We collected Amphisolenia bidentata cells in the Indian Ocean and the identity of the eukaryotic endosymbi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 14 شماره
صفحات -
تاریخ انتشار 2002